1
0
forked from Mirror/wren
Files
wren/test/benchmark/delta_blue.wren
Bob Nystrom 64eccdd9be Reorganize tests and benchmark scripts.
Mainly to get rid of one top level directory. But this will
also be useful when there are tests of the embedding API.
2015-03-14 12:45:56 -07:00

712 lines
21 KiB
Plaintext

// Copyright 2011 Google Inc. All Rights Reserved.
// Copyright 1996 John Maloney and Mario Wolczko
//
// This file is part of GNU Smalltalk.
//
// GNU Smalltalk is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2, or (at your option) any later version.
//
// GNU Smalltalk is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along with
// GNU Smalltalk; see the file COPYING. If not, write to the Free Software
// Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// Translated first from Smalltalk to JavaScript, and finally to
// Dart by Google 2008-2010.
//
// Translated to Wren by Bob Nystrom 2014.
// A Wren implementation of the DeltaBlue constraint-solving
// algorithm, as described in:
//
// "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
// Bjorn N. Freeman-Benson and John Maloney
// January 1990 Communications of the ACM,
// also available as University of Washington TR 89-08-06.
//
// Beware: this benchmark is written in a grotesque style where
// the constraint model is built by side-effects from constructors.
// I've kept it this way to avoid deviating too much from the original
// implementation.
// TODO: Support forward declarations of globals.
var REQUIRED = null
var STRONG_REFERRED = null
var PREFERRED = null
var STRONG_DEFAULT = null
var NORMAL = null
var WEAK_DEFAULT = null
var WEAKEST = null
var ORDERED = null
// Strengths are used to measure the relative importance of constraints.
// New strengths may be inserted in the strength hierarchy without
// disrupting current constraints. Strengths cannot be created outside
// this class, so == can be used for value comparison.
class Strength {
new(value, name) {
_value = value
_name = name
}
value { _value }
name { _name }
nextWeaker { ORDERED[_value] }
static stronger(s1, s2) { s1.value < s2.value }
static weaker(s1, s2) { s1.value > s2.value }
static weakest(s1, s2) { Strength.weaker(s1, s2) ? s1 : s2 }
static strongest(s1, s2) { Strength.stronger(s1, s2) ? s1 : s2 }
}
// Compile time computed constants.
REQUIRED = new Strength(0, "required")
STRONG_REFERRED = new Strength(1, "strongPreferred")
PREFERRED = new Strength(2, "preferred")
STRONG_DEFAULT = new Strength(3, "strongDefault")
NORMAL = new Strength(4, "normal")
WEAK_DEFAULT = new Strength(5, "weakDefault")
WEAKEST = new Strength(6, "weakest")
ORDERED = [
WEAKEST, WEAK_DEFAULT, NORMAL, STRONG_DEFAULT, PREFERRED, STRONG_REFERRED
]
var ThePlanner
class Constraint {
new(strength) {
_strength = strength
}
strength { _strength }
// Activate this constraint and attempt to satisfy it.
addConstraint {
addToGraph
ThePlanner.incrementalAdd(this)
}
// Attempt to find a way to enforce this constraint. If successful,
// record the solution, perhaps modifying the current dataflow
// graph. Answer the constraint that this constraint overrides, if
// there is one, or nil, if there isn't.
// Assume: I am not already satisfied.
satisfy(mark) {
chooseMethod(mark)
if (!isSatisfied) {
if (_strength == REQUIRED) {
IO.print("Could not satisfy a required constraint!")
}
return null
}
markInputs(mark)
var out = output
var overridden = out.determinedBy
if (overridden != null) overridden.markUnsatisfied
out.determinedBy = this
if (!ThePlanner.addPropagate(this, mark)) IO.print("Cycle encountered")
out.mark = mark
return overridden
}
destroyConstraint {
if (isSatisfied) ThePlanner.incrementalRemove(this)
removeFromGraph
}
// Normal constraints are not input constraints. An input constraint
// is one that depends on external state, such as the mouse, the
// keybord, a clock, or some arbitraty piece of imperative code.
isInput { false }
}
// Abstract superclass for constraints having a single possible output variable.
class UnaryConstraint is Constraint {
new(myOutput, strength) {
super(strength)
_satisfied = false
_myOutput = myOutput
addConstraint
}
// Adds this constraint to the constraint graph.
addToGraph {
_myOutput.addConstraint(this)
_satisfied = false
}
// Decides if this constraint can be satisfied and records that decision.
chooseMethod(mark) {
_satisfied = (_myOutput.mark != mark) &&
Strength.stronger(strength, _myOutput.walkStrength)
}
// Returns true if this constraint is satisfied in the current solution.
isSatisfied { _satisfied }
markInputs(mark) {
// has no inputs.
}
// Returns the current output variable.
output { _myOutput }
// Calculate the walkabout strength, the stay flag, and, if it is
// 'stay', the value for the current output of this constraint. Assume
// this constraint is satisfied.
recalculate {
_myOutput.walkStrength = strength
_myOutput.stay = !isInput
if (_myOutput.stay) execute // Stay optimization.
}
// Records that this constraint is unsatisfied.
markUnsatisfied {
_satisfied = false
}
inputsKnown(mark) { true }
removeFromGraph {
if (_myOutput != null) _myOutput.removeConstraint(this)
_satisfied = false
}
}
// Variables that should, with some level of preference, stay the same.
// Planners may exploit the fact that instances, if satisfied, will not
// change their output during plan execution. This is called "stay
// optimization".
class StayConstraint is UnaryConstraint {
new(variable, strength) {
super(variable, strength)
}
execute {
// Stay constraints do nothing.
}
}
// A unary input constraint used to mark a variable that the client
// wishes to change.
class EditConstraint is UnaryConstraint {
EditConstraint(variable, strength) {
super(variable, strength)
}
// Edits indicate that a variable is to be changed by imperative code.
isInput { true }
execute {
// Edit constraints do nothing.
}
}
// Directions.
var NONE = 1
var FORWARD = 2
var BACKWARD = 0
// Abstract superclass for constraints having two possible output
// variables.
class BinaryConstraint is Constraint {
new(v1, v2, strength) {
super(strength)
_v1 = v1
_v2 = v2
_direction = NONE
addConstraint
}
direction { _direction }
v1 { _v1 }
v2 { _v2 }
// Decides if this constraint can be satisfied and which way it
// should flow based on the relative strength of the variables related,
// and record that decision.
chooseMethod(mark) {
if (_v1.mark == mark) {
if (_v2.mark != mark &&
Strength.stronger(strength, _v2.walkStrength)) {
_direction = FORWARD
} else {
_direction = NONE
}
}
if (_v2.mark == mark) {
if (_v1.mark != mark &&
Strength.stronger(strength, _v1.walkStrength)) {
_direction = BACKWARD
} else {
_direction = NONE
}
}
if (Strength.weaker(_v1.walkStrength, _v2.walkStrength)) {
if (Strength.stronger(strength, _v1.walkStrength)) {
_direction = BACKWARD
} else {
_direction = NONE
}
} else {
if (Strength.stronger(strength, _v2.walkStrength)) {
_direction = FORWARD
} else {
_direction = BACKWARD
}
}
}
// Add this constraint to the constraint graph.
addToGraph {
_v1.addConstraint(this)
_v2.addConstraint(this)
_direction = NONE
}
// Answer true if this constraint is satisfied in the current solution.
isSatisfied { _direction != NONE }
// Mark the input variable with the given mark.
markInputs(mark) {
input.mark = mark
}
// Returns the current input variable
input {
if (_direction == FORWARD) return _v1
return _v2
}
// Returns the current output variable.
output {
if (_direction == FORWARD) return _v2
return _v1
}
// Calculate the walkabout strength, the stay flag, and, if it is
// 'stay', the value for the current output of this
// constraint. Assume this constraint is satisfied.
recalculate {
var ihn = input
var out = output
out.walkStrength = Strength.weakest(strength, ihn.walkStrength)
out.stay = ihn.stay
if (out.stay) execute
}
// Record the fact that this constraint is unsatisfied.
markUnsatisfied {
_direction = NONE
}
inputsKnown(mark) {
var i = input
return i.mark == mark || i.stay || i.determinedBy == null
}
removeFromGraph {
if (_v1 != null) _v1.removeConstraint(this)
if (_v2 != null) _v2.removeConstraint(this)
_direction = NONE
}
}
// Relates two variables by the linear scaling relationship: "v2 =
// (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
// this relationship but the scale factor and offset are considered
// read-only.
class ScaleConstraint is BinaryConstraint {
new(src, scale, offset, dest, strength) {
_scale = scale
_offset = offset
super(src, dest, strength)
}
// Adds this constraint to the constraint graph.
addToGraph {
super.addToGraph
_scale.addConstraint(this)
_offset.addConstraint(this)
}
removeFromGraph {
super.removeFromGraph
if (_scale != null) _scale.removeConstraint(this)
if (_offset != null) _offset.removeConstraint(this)
}
markInputs(mark) {
super.markInputs(mark)
_scale.mark = _offset.mark = mark
}
// Enforce this constraint. Assume that it is satisfied.
execute {
if (direction == FORWARD) {
v2.value = v1.value * _scale.value + _offset.value
} else {
// TODO: Is this the same semantics as ~/?
v1.value = ((v2.value - _offset.value) / _scale.value).floor
}
}
// Calculate the walkabout strength, the stay flag, and, if it is
// 'stay', the value for the current output of this constraint. Assume
// this constraint is satisfied.
recalculate {
var ihn = input
var out = output
out.walkStrength = Strength.weakest(strength, ihn.walkStrength)
out.stay = ihn.stay && _scale.stay && _offset.stay
if (out.stay) execute
}
}
// Constrains two variables to have the same value.
class EqualityConstraint is BinaryConstraint {
new(v1, v2, strength) {
super(v1, v2, strength)
}
// Enforce this constraint. Assume that it is satisfied.
execute {
output.value = input.value
}
}
// A constrained variable. In addition to its value, it maintain the
// structure of the constraint graph, the current dataflow graph, and
// various parameters of interest to the DeltaBlue incremental
// constraint solver.
class Variable {
new(name, value) {
_constraints = []
_determinedBy = null
_mark = 0
_walkStrength = WEAKEST
_stay = true
_name = name
_value = value
}
constraints { _constraints }
determinedBy { _determinedBy }
determinedBy=(value) { _determinedBy = value }
mark { _mark }
mark=(value) { _mark = value }
walkStrength { _walkStrength }
walkStrength=(value) { _walkStrength = value }
stay { _stay }
stay=(value) { _stay = value }
value { _value }
value=(newValue) { _value = newValue }
// Add the given constraint to the set of all constraints that refer
// this variable.
addConstraint(constraint) {
_constraints.add(constraint)
}
// Removes all traces of c from this variable.
removeConstraint(constraint) {
_constraints = _constraints.where { |c| c != constraint }
if (_determinedBy == constraint) _determinedBy = null
}
}
// A Plan is an ordered list of constraints to be executed in sequence
// to resatisfy all currently satisfiable constraints in the face of
// one or more changing inputs.
class Plan {
new {
_list = []
}
addConstraint(constraint) {
_list.add(constraint)
}
size { _list.count }
execute {
for (constraint in _list) {
constraint.execute
}
}
}
class Planner {
new {
_currentMark = 0
}
// Attempt to satisfy the given constraint and, if successful,
// incrementally update the dataflow graph. Details: If satifying
// the constraint is successful, it may override a weaker constraint
// on its output. The algorithm attempts to resatisfy that
// constraint using some other method. This process is repeated
// until either a) it reaches a variable that was not previously
// determined by any constraint or b) it reaches a constraint that
// is too weak to be satisfied using any of its methods. The
// variables of constraints that have been processed are marked with
// a unique mark value so that we know where we've been. This allows
// the algorithm to avoid getting into an infinite loop even if the
// constraint graph has an inadvertent cycle.
incrementalAdd(constraint) {
var mark = newMark
var overridden = constraint.satisfy(mark)
while (overridden != null) {
overridden = overridden.satisfy(mark)
}
}
// Entry point for retracting a constraint. Remove the given
// constraint and incrementally update the dataflow graph.
// Details: Retracting the given constraint may allow some currently
// unsatisfiable downstream constraint to be satisfied. We therefore collect
// a list of unsatisfied downstream constraints and attempt to
// satisfy each one in turn. This list is traversed by constraint
// strength, strongest first, as a heuristic for avoiding
// unnecessarily adding and then overriding weak constraints.
// Assume: [c] is satisfied.
incrementalRemove(constraint) {
var out = constraint.output
constraint.markUnsatisfied
constraint.removeFromGraph
var unsatisfied = removePropagateFrom(out)
var strength = REQUIRED
while (true) {
for (u in unsatisfied) {
if (u.strength == strength) incrementalAdd(u)
}
strength = strength.nextWeaker
if (strength == WEAKEST) break
}
}
// Select a previously unused mark value.
newMark {
_currentMark = _currentMark + 1
return _currentMark
}
// Extract a plan for resatisfaction starting from the given source
// constraints, usually a set of input constraints. This method
// assumes that stay optimization is desired; the plan will contain
// only constraints whose output variables are not stay. Constraints
// that do no computation, such as stay and edit constraints, are
// not included in the plan.
// Details: The outputs of a constraint are marked when it is added
// to the plan under construction. A constraint may be appended to
// the plan when all its input variables are known. A variable is
// known if either a) the variable is marked (indicating that has
// been computed by a constraint appearing earlier in the plan), b)
// the variable is 'stay' (i.e. it is a constant at plan execution
// time), or c) the variable is not determined by any
// constraint. The last provision is for past states of history
// variables, which are not stay but which are also not computed by
// any constraint.
// Assume: [sources] are all satisfied.
makePlan(sources) {
var mark = newMark
var plan = new Plan
var todo = sources
while (todo.count > 0) {
var constraint = todo.removeAt(-1)
if (constraint.output.mark != mark && constraint.inputsKnown(mark)) {
plan.addConstraint(constraint)
constraint.output.mark = mark
addConstraintsConsumingTo(constraint.output, todo)
}
}
return plan
}
// Extract a plan for resatisfying starting from the output of the
// given [constraints], usually a set of input constraints.
extractPlanFromConstraints(constraints) {
var sources = []
for (constraint in constraints) {
// if not in plan already and eligible for inclusion.
if (constraint.isInput && constraint.isSatisfied) sources.add(constraint)
}
return makePlan(sources)
}
// Recompute the walkabout strengths and stay flags of all variables
// downstream of the given constraint and recompute the actual
// values of all variables whose stay flag is true. If a cycle is
// detected, remove the given constraint and answer
// false. Otherwise, answer true.
// Details: Cycles are detected when a marked variable is
// encountered downstream of the given constraint. The sender is
// assumed to have marked the inputs of the given constraint with
// the given mark. Thus, encountering a marked node downstream of
// the output constraint means that there is a path from the
// constraint's output to one of its inputs.
addPropagate(constraint, mark) {
var todo = [constraint]
while (todo.count > 0) {
var d = todo.removeAt(-1)
if (d.output.mark == mark) {
incrementalRemove(constraint)
return false
}
d.recalculate
addConstraintsConsumingTo(d.output, todo)
}
return true
}
// Update the walkabout strengths and stay flags of all variables
// downstream of the given constraint. Answer a collection of
// unsatisfied constraints sorted in order of decreasing strength.
removePropagateFrom(out) {
out.determinedBy = null
out.walkStrength = WEAKEST
out.stay = true
var unsatisfied = []
var todo = [out]
while (todo.count > 0) {
var v = todo.removeAt(-1)
for (constraint in v.constraints) {
if (!constraint.isSatisfied) unsatisfied.add(constraint)
}
var determining = v.determinedBy
for (next in v.constraints) {
if (next != determining && next.isSatisfied) {
next.recalculate
todo.add(next.output)
}
}
}
return unsatisfied
}
addConstraintsConsumingTo(v, coll) {
var determining = v.determinedBy
for (constraint in v.constraints) {
if (constraint != determining && constraint.isSatisfied) {
coll.add(constraint)
}
}
}
}
var total = 0
// This is the standard DeltaBlue benchmark. A long chain of equality
// constraints is constructed with a stay constraint on one end. An
// edit constraint is then added to the opposite end and the time is
// measured for adding and removing this constraint, and extracting
// and executing a constraint satisfaction plan. There are two cases.
// In case 1, the added constraint is stronger than the stay
// constraint and values must propagate down the entire length of the
// chain. In case 2, the added constraint is weaker than the stay
// constraint so it cannot be accomodated. The cost in this case is,
// of course, very low. Typical situations lie somewhere between these
// two extremes.
var chainTest = new Fn {|n|
ThePlanner = new Planner
var prev = null
var first = null
var last = null
// Build chain of n equality constraints.
for (i in 0..n) {
var v = new Variable("v", 0)
if (prev != null) new EqualityConstraint(prev, v, REQUIRED)
if (i == 0) first = v
if (i == n) last = v
prev = v
}
new StayConstraint(last, STRONG_DEFAULT)
var edit = new EditConstraint(first, PREFERRED)
var plan = ThePlanner.extractPlanFromConstraints([edit])
for (i in 0...100) {
first.value = i
plan.execute
total = total + last.value
}
}
var change = new Fn {|v, newValue|
var edit = new EditConstraint(v, PREFERRED)
var plan = ThePlanner.extractPlanFromConstraints([edit])
for (i in 0...10) {
v.value = newValue
plan.execute
}
edit.destroyConstraint
}
// This test constructs a two sets of variables related to each
// other by a simple linear transformation (scale and offset). The
// time is measured to change a variable on either side of the
// mapping and to change the scale and offset factors.
var projectionTest = new Fn {|n|
ThePlanner = new Planner
var scale = new Variable("scale", 10)
var offset = new Variable("offset", 1000)
var src = null
var dst = null
var dests = []
for (i in 0...n) {
src = new Variable("src", i)
dst = new Variable("dst", i)
dests.add(dst)
new StayConstraint(src, NORMAL)
new ScaleConstraint(src, scale, offset, dst, REQUIRED)
}
change.call(src, 17)
total = total + dst.value
if (dst.value != 1170) IO.print("Projection 1 failed")
change.call(dst, 1050)
total = total + src.value
if (src.value != 5) IO.print("Projection 2 failed")
change.call(scale, 5)
for (i in 0...n - 1) {
total = total + dests[i].value
if (dests[i].value != i * 5 + 1000) IO.print("Projection 3 failed")
}
change.call(offset, 2000)
for (i in 0...n - 1) {
total = total + dests[i].value
if (dests[i].value != i * 5 + 2000) IO.print("Projection 4 failed")
}
}
var start = IO.clock
for (i in 0...20) {
chainTest.call(100)
projectionTest.call(100)
}
IO.print(total)
IO.print("elapsed: ", IO.clock - start)